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Let z: [0, 1] ~ [0, 1] be a piecewise monotonic expanding map. Then z admits 
an absolutely continuous invariant measure ~. A result of Kosyakin and Sandler 
shows that ,u can be approximated by a sequence of absolutely continuous 
measures/~n invariant under piecewise linear Markov maps z,. Each Tn is con- 
structed on the inverse images of the turning points of z. The easily computable 
measures/~, are used to estimate the Liapunov exponent of ~. The idea of using 
Markov maps for estimating the Liapunov exponent is applied to both 
expanding and nonexpanding maps. 

KEY WORDS:  Liapunov exponent; piecewise monotonic map; Markov map; 
absolutely continuous univariant measure; negative Schawarzian. 

1. I N T R O D U C T I O N  

A chaotic system is one in which long-term prediction of the system state is 
impossible because inaccuracies in speicifying the initial state of the system 
are rapidly amplied in time. The exponential divergence of nearby trajec- 
tories is an important indicator of deterministic chaos .  (1'4'I6'17'18). The 
Liapunov exponent ~6~ describes the rate of increase of the perturbations of 
the initial conditions. Let I =  [0, 1 ]. In this paper we consider one-dimen- 
sional systems defined by a map z : I ~  L In Ref. 16 it is shown that the rate 
of orbital divergence, called the Liapunov exponent, is given by 

2 = l ira 1 n -  t - ~ log2 Iz'(zi(x))[ 
n ~  F/ i=O 
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where x is the initial point and zi is the ith iterate of v. If ~ admits an 
absolutely continuous invariant measure /~ with probability density 
function f, the Birkhoff ergodic theorem applied to the function ~b(x)= 
log 2 Iz'(x)[ yields 

f2 2--- f (x) log2 Ir'(x)l dx (1) 

We quote from Ref. 4: "The Lyapunov exponent is most easily understood 
in this form [Eq. (1)]: local stretching, determined by the logarithm of the 
magnitude of the slope, is weighted by the probability of encountering that 
amount of stretching." 

Given the functional form of a one-dimensional map, Eq. (1) provides 
a means of estimating 2. Such estimations are done by using long orbits to 
approximate the density. In Refs. 1 and 3 such an approach is discussed for 
experimental data for a chemical reaction. ~1'3) But there are limitations to 
this approach, and the method is usually not robust. ~t) 

One of the problems in applying Eq. (1) in experimental situations is 
the underlying assumption that an absolutely invariant measure exists. In 
Ref. 15 it is shown that even a simple unimodal map on I can possess an 
uncountable number of continuous (but not absolutely continuous) ergodic 
measures. Each one of these measures is "exhibited" by a dense orbit and 
indeed possesses a dense set of generic points (Ref. 20, Proposition 5.8). 
Hence, an orbit that produces a histogram is no indication that that 
histogram corresponds to an absolutely continuous invariant measure. In 
fact, it could be the histogram of any of the uncountably many other 
invariant measures. 

Recently, time series approaches to estimating Liapunov exponents 
have been proposed. ~'2,4'5'1~ For a continuous, dissipative, n-dimensional 
dynamical system, the /th Liapunov exponent is defined in terms of the 
growth rate of the ith principal axis pi(t) of an n-sphere of initial con- 
ditions, i.e., 

pi(t) 
2i = tlimo~ log2 pi(0) 

In one dimension, this reduces to 

1 L(t) 
2 =  lim ~log 2 

, ~  t L(O) 

where L(0) is an interval of initial conditions and L(t) is the length of this 
interval at time t. If T is not continuous, this method does not work, since 
ellipsoids are not necessarily transformed into ellipsoids. 
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In Section 2 we consider a class of piecewise monotonic, expanding 
maps, which are not necessarily continuous. These maps admit absolutely 
continuous invariant measures (9,m and furthermore have the property that 
the absolutely continuous invariant measures can be approximated by the 
absolutely continuous invariant measures of piecewise linear Markov 
maps. ~ The measures of the piecewise linear Markov maps are obtained 
by finding the left eigenvectors of matrices (22) and hence can be used to 
estimate the Liapunov exponent. 

In Section4 we study nonexpanding maps and prove that under 
certain conditions the alogorithm of Section 3 is applicable to such maps. 

2. N O T A T I O N  A N D  B A C K G R O U N D  M A T E R I A L  

Let z: I ~  I be a nonsingular, measurable transformation and let B 
denote the Lebesgue measurable subsets of L A measure p defined on (I, B) 
is absolutely continuous if there exists a function f :  I--, [0, oo), which is 
integrable with respect to Lebesgue measure m, i.e., f~L~=--LI(I,B, m) 
and for which 

( .  

#(S) = js f ( x )  m(dx) ySe B 

The measure ~t is invariant (under r) i f / t ( r - I S )  = ~(S) for all S s B. 
The Frobenius-Perron operator P~ :L1 --* L1 is defined by 

d 
(PJ)(x) =-~x f~-l[O,x ] f(s) m(ds) 

P,  has proven to be a useful tool in the study of absolutely continuous 
invariant measures (21). Its importance lies in the fact that each of its fixed 
points is a density of a measure invariant under ~, i.e., if P,f* = f * ,  then 

is invariant under r. 

g(A ) = ;A f*(x) m(dx) 

Def in i t i on  1. The map r : I ~ I  is called Markov if there exist 
points 0 = Co < Cl < .-. < cn_ 1 < c, = 1 such that for i = 0, 1,..., n - 1, r I1,, 
where I i=  (cg_ 1, ci), is a homeomorphism onto some interval (cj~i), ck(o). 

I n is referred to as a Markov partition The partition of I defined by { ~}~= i 
(with respect to r). 
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Let ~ be a piecewise linear Markov map. Then P, ,  when restricted to 
the space of step functions on the Markov partition, is a matrix M~ (22), 
with entries 

{~/1~ ' 1 , , I  if r(I,-) = I: 
mu = otherwise 

In Ref. 27 it is shown that M~ is similar to a stochastic matrix and therefore 
has a fixed point f which is a step function on the Markov partition. 

D e f i n i t i o n  2. Let {#~} be a sequence of absolutely continuous 
invariant probability measures and let f ,  be the density of /~n. We say 
f , ( p , )  converges weakly to the density f (measure p) if and only if for each 
g ~ C, the space of real continuous functions on L 

fl g(x f,(x) m(dx) ~ Jr g(x) f(x) m(dx) 
[ ,  

as n ~ ~ .  l i t  is sufficient that g is in a space that is dense in C (Ref. 12, 
Theorem 12.2). ] 

3. PIECEWISE M O N O T O N I C  EXPANDING M A P S  

Let the map T: I--, I satisfy the following two conditions. 

(a) There exist points 0 = a 0 < a ~ < . - . < a N _ ~ < a N = l  such that 
r(x) is twice continuously differentiable on the intervals 
(a~,a~+~), i=O, 1,...,N-1, and at the points {a~} there are 
one-sided first derivatives. 

(b) There are constants K, d, and M such that 

and 

IT"(x)] ~< M 

everywhere except at the points {ai}, i = O, 1 ..... N. 

We let C denote this class of maps. Note that r e C does not have to 
be continuous. 

Let I = {Io, I1 ..... IN_ 1 } be the subintervals of the partition of I defined 
by {a;}. Let 

k 

I~k)= V r '(I) 
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denote the subintervals of the partition obtained by using all the points 
U~=0 r-~{a0,..., au}, and let Q~k)= {q~k),..., q~)} be the set of end points of 
the intervals that are elements of I (k). For an arbitrary point a:, 
j = 0, 1 ..... N, we consider the points 

q ! k )  and a! k) 

of the set Q~k), approximating aj from the left and from the right, respec- 
tively. For ao, it is 

q!k) 
tao+ 

while for a N it is 

q!k) t a ~  

Given r: I ~ / ,  we want to construct a Markov map ik on Q(k) that 
approximates T. To do this, we proceed as follows: if q}k)r aj for some j, 
define ~k(ql ~)) = r(qlk)). It remains only to define ?k on the original partition 
points {ao, am ..... aN} .  Consider q}k) = aj for some j. If z is increasing on 
(aj_~, aj), define fk(aT) to be that point ql k) of Q(k) that is closest to 

r(aT) and greater than or equal to r ( a f ) .  (Sb~e Fig. la.) Similarly, if ~ is 
decreasing on (aj_ m, aj), define ?k(a 7 )  to be the point a! k) of Q(k) that is 

-~ lbj 

closest to r ( a f )  and less than or equal to z(aj ). (See Fig. lb.) Also, we 
define ~ (a j  + ) to be that point qe~j~(k) of Q(k) that is nearest to r(a~ ) and less 

than or equal to r(aj +) if r is increasing on (aj, aj+m). If z is decreasing on 
(aj, aj+ 1), define ?k(af  ) to be the point a! ~) of Q~k) that is closest to z (a f  ) -l  lcj 

and greater than or equal to r(aj +). 
We now define ~k by the following conditions: ? k = v  everywhere 

except on the intervals 

(a(k) aj) and (aj, a! k)_~ ,oj+ ) 

on which v is changed in such a way that ~ e C, 

lira ?k(x) = a(k) lim ~ (x )  = a! k) 
- " ~ b j  ' -1 ~: 

x ~ a j  x ~ a f f  

(This choice of fk makes it expanding and guarantees that the 
approximating sequence of absolutely continuous invariant measures is 
weakly compact.) From the proof of Lemma 3 of Ref. 9, we obtain that fk 
can be replaced by a piecewise linear Markov map zk having the same 
endpoints as fk. 
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f 
| 

ill I 

( k ~  
0 a)_• qi _ 

] 

(a) 

Fig. 1. 

(k) 

qi  b 

Xx 7 

X x 

<k) 
aj-i qi aj 

(b) 

Piecewise linear Markov map approximation for an expanding map. 

The following result is proved in Ref. 9. 

T h e o r e m  1. Let ~ e C and/~ be an absolutely continuous measure 
invariant under ~ with probability density function f Then r k ~  
uniformly, each Vk admits an absolutely continuous invariant measure with 
density fk, and fk ~ f weakly as k ~ oo. 

Note that v is erogodic with respect to/~. 

C o r o l l a r y  1. Let 

2k = fk(X)  log2 Ir;(X)l dx 
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Then 

lim 2 k = 2 -= f (x)  log2 I~'(x)( dx 

ProoL Since r eC,  log2 rr'(x)f is a piecewise continuous function. 
Hence it follows from Lemma2 that f , ~ f  weakly implies 
limk~ ~ 2k = 2. II 

We now review the foregoing steps in the form of an algorithm. 

A l g o r i t h m  

Step I. Let I =  {Ii}U=-01 be the partition of I into the intervals of 
smoothness of r. Set 

k 

I(k)= V -c i(i) 
i = 0  

(k) Let Q<~)= {q~k) ..... q,~ } be the set of endpoints of the intervals that are 
elements of the partition I <k). 

Step 2. Form the piecewise linear Markov map rk on the partition 
I ~k) by choosing the images of the original points {a i ,  a + } in such a way 
that zk has the magnitude of its slope greater than or equal to that of z 
everywhere that it is defined. 

Step 3. Let the matrix Mk denote the Frobenius-Perron operator of 
P~ restricted to the space of step functions on I ~). Compute the left eigen- 
vector of Mk, ~z2) fk, which we view as a step function on I (x). 

Step 4. Compute 

2k = ~ fk 14,~, m(I}k))log2 ]r•lz}*,t (2) 
{i:6c~) c I< k)} 

The algorithm was programmed in FORTRAN on an IBM PC. The 
partition points of Q(") are found using the points in Q("- ~) as y values 
and then doing a binary search to find the corresponding x values. Each 
such x value becomes a new partition point unless it is within 0.001 of an 
existing partition point. During the nth (backward) iteration, it is only 
necessary to consider the partition points created during the ( n - 1 ) t h  
iteration. 

For Q(~), each interval of the associated partition I (k) corresponds to 
one row of the matrix Mk. Recall 

me= 1/l~kl#d if rk(II k~)___I} k) 

= 0 otherwise 
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In computing 

we choose the closest partition point of Q(k) that produces a slope for Zk 
larger in magnitude than that of 

I i!kl 

Gaussian elimination is used to find the left eigenvector of M k, which 
is then normalized by the requirement that 

Al,)k,m(Ilk))= 1 
{ i: l i(k) E I(k) } 

Finally, the summation in (2) yields the estimate of the Liapunov exponent. 

Remark. This algorithm can be applied to maps of the entire real line 
by using the results of Ref. 38. 

Example I. Consider the map v:I ~ I shown in Fig. 2. The map r is 
a piecewise linear Markov map, whose Frobenius-Perron operator has the 
matrix representation [o o 

0 0 0 ; 

0 �89 �89 
1 0 0 

1 "r 

3 / 4  

1 / 2  

1 / 4 ,  

0 t / 4  t / 2  3 / 4  

Fig. 2. A piecewise linear Markov Map. 



Solving for the normalized left eigenvector, we get 

[ ~, 0 ~ < x < ~ ]  

/ ( x ) :  ~' �88189 
2 l ~ . . J 3 /  

from which it follows that 2--4. 
Since r has Islopel = 1 on two intervals, it is not an expanding map. 

But the foregoing analysis is valid since z z is expanding. Applying the 
algorithm to r, we obtained 2 = 0.57143 for every partition used. 

Example 2. Consider the family of expanding maps 

~ ax 2 + (2 - a/2 )x, 0 <~ x <~ �89 
Za(X)=[a(1--x)2+(2--a/2)(1--x),  �89 

where - 2 < a < 2 ,  as shown in Fig. 3. Figure4 shows the computed 
Liapunov exponent as a function of a. 

Example 3. Consider the discontinuous, piecewise monotonic, 
expanding map T: I--+ I defined by 

~0.2 + 0.6(x 2 + 3x), 

~ ( x ) :  t0.1 + 0.8 [(1 - x) 2 + ~(1 - x) ] ,  
0 ~ < x < � 8 9  

1 .0 <t=-i cx=-1 
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0 .5 I .0  

Fig. 3. A family of expanding maps. 
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, . o  

�9 9 7  

9 2  

. e 7  

. 8 4  

. e 3  

. s o  

- z . o  - x . ~  l . z  - . e  - . 4  o . 4  . e  l . z  ~ . 6  z . o  

Fig. 4. Liapunov exponent as a function of a. 

Table I displays the results obtained using the algorithm. The first column 
denotes the number of the backward iteration 

I~")= ~/ ~-i(I) 
i=o  

The second column denotes the number of points in the nth-level partition 
and the third column shows the Liapunov exponent corresponding to the 
nth-level partition. 

Table I 

Number of Number of Estimate of 
iterations partition points Liapunov exponent 

0 2 1.00 
1 4 0.98904 
2 7 0.89681 
3 12 0.83514 
4 31 0.77115 
5 55 0.71509 
6 97 0.71109 
7 12 0.70346 
8 144 0.70317 
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4. N O N E X P A N D I N G  M A P S  

Unlike the situation for piecewise, monotonic, expanding maps, there 
is no general theorem for nonexpanding maps that guarantees the existence 
of an absolutely continuous invariant measure. In Refs. 23-26 some special 
results are proved. The essential condition that appears in Refs. 23, 24, and 
26 is that the Schwarzian be negative. In Ref. 26 this condition is weakened 
slightly and necessary and sufficient conditions provided for the existence 
of an absolutely continuous invariant measure. Indeed, for certain families 
of maps {%}, % has a set of parameter values of positive Lebesgue 
measure.(26) 

Although the negative Schwarzian condition may seem restrictive, it is 
satisfied by many dynamical systems of physical importance, for example, 
the famous logistic transformation rr which models 
population dynamics, and the transformation r(x)=rxe -6x, which is an 
accurate model for the Poincar6 sections of the Belousov-Zhabotinski reac- 
tion in a well-stirred flow reactor. (1'4'36'37) 

In this section we assume that z is a unimodal map that has a negative 
Schwarzian and admits an absolutely continuous measure It. We show that 
in this situation the algorithm of Section 3 applies, i.e., the densities of the 
approximating Markov maps approach the density of/~ weakly. Hence this 
permits the approximation of the Liapunov exponent as in Section 3. 

The reason for assuming r to have a negative Schwarzian is that it 
guarantees that the inverse images of the turning point are dense in L If 
this were known or could be proved, then the negative Schwarzian con- 
dition is unnecessary. 

Def in i t ion  3. Let ~:I--,I be in C 3, i.e., it has three continuous 
derivatives. Then the Schwarzian derivative of r is 

s(o  = < i x )  3 2 

Now let 

T = {z: z e C 3, z is unimodal, and S(z) < 0} 

Lemma 1. Let z e T  and assume it has an absolutely continuous 
invariant measure. Then [_)2~ v k(c) is dense in I, where c is the initial 
point of ~. 

Proof. In Ref. 32 it is shown that if v has a stable periodic orbit, then 
the set of points that is not attracted to the stable periodic orbit has 
Lebesgue measure 0. Hence, in this case, r cannot have an absolutely 

822/50/I-2-15 
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continuous invariant measure, since the support of this measure has 
positive Lebesgue measure. Thus, ~ cannot have a stable periodic orbit 
and it follows from Ref. 32 or Lemma 3 of Ref. 26 that U~~ is 
dense in L | 

We shall require the following definition and two preliminary results. 

D e f i n i t i o n  4. Let g be any function from I into ( - 0 %  oo), and let 
6 and e be positive numbers. We denote by 0~,~(g) the set of those points 
x e I  for which the distance between g(x') and g(x") exceeds e for some 
pair of points x', x" in the open interval (x - 6, x + 6). 

A more general version of the following theorem is proved in Ref. 29. 

Theorem 2. Let {gn}.~l  be a sequence of bounded, real-valued, 
and measurable functions defined on S and let c~ be a real number. Then a 
necessary and sufficient condition that Sl g.(x) f . (x)m(dx)- .  ~ for every 
sequence {f .  } converging weakly to f is that 

(a) {gn}n~l is uniformly bounded 

(b) ~1 g,(x)f(x) m(dx)--* ~z 
(c) Ve > 0, lim~ -~o lim sup, _~ co ~0~,~g,)f(x) m(dx) = 0 

It can be shown that (c) holds iff 

(c') r e >  0, for every sequence {6k} of positive numbers converging 
to 0, and for every subsequence { g,k}, 

f f (x)  m(dx) = 0 

L e m m a  2. Let g be a bounded, piecewise continuous function on 
[0, 1] whose set of discontinuity points D has Lebesgue measure 0. Let 
{ g,} be a uniformly bounded sequence of piecewise continuous functions 
which approaches g uniformly. Then, if f ,  --* f weakly as n ~ o% 

Ji Js 
a s  n --~ o o .  

ProoL Since gn ~ g uniformly, we have 

f, gn(x) f ( x )m(dx )~  f, g(x) f(x)m(dx) 

It remains to prove (c'). Let e >0.  Then for any sequence {6k} of positive 
numbers converging to 0 and every subsequence { g,k}, N~~ 3~k.~(g,k) ~ D. 
Since m(D)= 0, (c') is valid and Theorem 2 can be invoked. | 
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k e m m a  3. Let {~.} be a sequence of nonsingular transformations 
from I ~ I that approach ~ uniformly. Let f e L~. Then 

I k(x)(P~.f)(x) m(dx) ~ It h(x)(PJ)(x) m(dx) 

as n ~ oo for any h e C ~, the space of functions on I that have continuous 
first derivative. 

From the definition of the Frobenius-Perron operator, we Proof. 
have 

flh(X)[ P~.f(x) - P~f(x) ] m(dx) 

= f h(x) I d  f~;,Eo,x2f(Y)m(dy) 

d f~ t[ox2f(y) m(dy);m(dx ) dx , 
Integrating by parts, 

Thus 

and 

fj h(x)[d f _lEo,xlf(Y)m(dy)]m(dx) 

= g(1) f2 f(x) m(dy) 

- fo f_~EO,xlf(y)m(dy ) g'(x)m(dx) 

Izh(X)[P~. f(x) - P~f(x) ] m(dx) 

= I, I I _jCO, x~ f( y) m(dy) 

- I~;l[O,x]f( Y)m(dy)] h'(x)m(dx) 

f h(x)[P~.f(x) - P~f(x)] m(dx)- 

<~ fz f,~-IEo,~)~(~;'EO,x])If(Y)[ m(dy) h'(x) m(dx) 
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where A denotes the symmetric difference. Since ~. --, z uniformly as n ~ o% 

m{('c l[O,x])A('Cnl[O,x])}--.O as n ~ o o  

Since h'(x) is continuous o n / ,  it is bounded. This completes the proof. 1 

We can now state the main result of this section. 

T h e o r e m  3. Let v: I ~ / b e  a unimodal map such that U~=o z-~(c) 
is dense in L where c is the critical point, and such that z admits an 
absolutely continuous invariant measure # with probability density 
function f * .  Let {%} be a sequence of piecewise linear Markov maps such 
that zn ~ ~ uniformly as n ~ oo. Let fn be the probability density function 
of the measure invariant under %. Assume f ,  ~ f weakly as n ~ oo. Then 

f - - f * .  

Proof. Let P~ be the Frobenius-Perron 
P,f, =f,. Now, for any h ~ C ~, 

f h(x)[f(x) - P~f(x)] m(dx) 

<~ [ h(x)[f(x)-f~(x)] rn(dx) Jl 

operator of z,.  Then 

+ l flh(x)[fn(x)- Pnf,(x) ] m(dx) 

+ fl h(x)[Pnf~(x) -- Pnf(x)] m(dx) 

+ [f, hlx E  lx)-  J x)l 

The first term approaches 0, since fn - -* f  weakly. Since P, fn =f~, the 
second term is identically 0. The fourth term approaches 0 by virtue of 
Lemma 3. Consider now the third term, 

d 
Io h(x)--~x {f~;l[o,x3 [fn(Y)- f(Y)] m(dy)} m(dx) 

=I~ {I~;,[o,x] [f~(Y)- f(Y)]m(dy)} h'(x) m(dx) 
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Fix x ~ [0, 1 ] and consider 

A,(x)-- ~ [ f ~ ( y ) - f ( y ) ]  m(dy) 
Jr .-1[o,1] 

= fz Z~;-I[o,11(Y)fn(Y) m(dy)- fz Z~;l[o, 1](Y)f(Y) m(dy) 

Now Z~. leo, 11(Y) is a piecewise continuous step function, which approaches 
Z~ '[o.~] uniformly as n ~ ~ .  Clearly 

ft Z~;l[o,1](Y)f(Y)m(dy)--* fI Z~;IEO'I](Y)f(Y)m(dy) 

as n ~ ~ .  Thus, it follows from Lemma 2 that An(x) ~ 0 as n ~ oo. Note 
that jAn(x)[ ~< 2. Since h~ C ~, [h'(x)[ ~<L < ~ .  Hence, the dominated 
convergence theorem implies that 

fj A,()h'(x)m(dx)~O 

as n ~ ~ .  We have therefore established that, for any h ~ C 1, 

fzh(x)[f(x)- P~(x)] m( dx) = 0 

This means PJ(x)=f(x)  m-a.e. But f *  is the unique fixed point of P~. 
Thus, f = f *  m-a.e., and f ~ f * .  | 

C o r o l l a r y  2. Let 2~ be the Liapunov exponent of ~ ,  as in (2). 
Then 

f2 Z k ~ 2 = f(x) log 2 Iv'(x)l m(dx) 

which is the Liapunov exponent of r, as k ~ ~ .  

ProoL Weak convergence of fk to f as k --* or. II 

Thus, the algorithm of Section 3 is valid for r satsfying the conditions 
of Theorem 3, in particular if ~ ~ T has an absolutely continuous invariant 
measure. 

Remarks. 1. The weakness in Theorem 3 is the critical assumption 
that f~ ~ f weakly as n --* ~ .  In the case when z is expanding, this follows 
from the main result of Ref. 9. In the nonexpanding case this has recently 
been proved in Ref. 35 for nonexpanding maps which are conjugate to 
piecewise expanding maps via an absolutely continuous homeomorphism. 



228 Boyarsky 

Table I I  

Number of Number of Estimate of 
iterations partition points Liapunov exponent 

0 2 1.00 
1 4 0.87243 
2 8 0.92392 
3 16 0.95968 
4 32 0.97934 
5 64 0.98957 
6 128 0.99475 

2. All that is needed for Theorem 3 to work is that ~, ~ v uniformly 
as n ~ oe and that {fn} converges weakly to some f e  L1 as n ~ oo. 

3. Since ~ is unimodal, it can have only one absolutely continuous 
invariant measure. (23'24) 

Example 4. Consiaer the logistic map r ( x ) = 4 x ( 1 - x ) .  Since ~ is 
differentiably conjugate to the triangle map with slope + 2  and - 2 ,  the 
Liapunov exponent is 1. We applied the algorithm of Section 3 to v and 
obtained the results shown in Table II. 

5. THE PRESENCE OF NOISE 

For the expanding maps of Section 3, it is shown in Refs. 11 and 34 
that the probability density function of the measure invariant under r is 
stable under small, random perturbations. Thus, the algorithm of Section 3 
will yield stable results in the presence of noise. For  nonexpanding maps 
such as those considered in Section 4, it is shown in Ref. 13 that measures 
of the noisy system converge to the absolutely continuous measure, which 
exists in virtue of the resu l t s in  Ref. 23. Problems related to estimating 
Liapunov exponents in the presence of the noise are discussed in Sec- 
tion 72  of Ref. 2. 
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